Roll No.

Paper ID [A0119]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - $1^{\text {st }} / 2^{\text {nd }}$)

ENGINEERING MATHEMATICS - II (AM - 102)

Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Five questions from Section - B \& C.
3) Select at least Two questions from Section $-B \& C$.

Section-A

Q1)
(2 Marks Each)
a) Are the solutions $y_{1}=\cos x \& y_{2}=\sin x$, linearly independent.
b) Explain Hermitian matrix with suitable example.
c) Is the differential eg. $\left(y^{2} e^{1 y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{\left(w^{2}\right.}-3 y^{2}\right) d y=0$, exact?
d) Find the Particular Integral of $\frac{d^{3} y}{d x^{3}}+4 \frac{d y}{d x}=\sin 2 x$.
e) Explain the technique of Bernoulli's linear équation.
f) If $\vec{r}=a \sin \omega t+b \cos \omega t$; then find $\vec{r} \times \frac{d \vec{r}}{d t}$.
g) Evaluate $\operatorname{div}\left[3 x^{2} \hat{i}+5 x y^{2} \hat{j}+x y z^{3} \hat{k}\right]$ at the point $(1,2,3)$.
h) From a pack of 52 cards, three cards are drawn at random. Find the chance that they are a king, a queen and a jack.
i) A variate X has following probability distribution

X	-3	6	9
$p(X)$	$1 / 6$	$1 / 2$	$1 / 3$

Evaluate $\mathrm{E}\left(\mathrm{X}^{2}\right)$.
j) Explain confidence limits of sampling.

Q2) Verify Cayley - Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. Find A^{-1}. Also express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial in A.

Q3) Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$.
Q4) Solve $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$, using method of variation.
Q5) A particle is executing simple harmonic motion with amplitude 20 cm and time 4 seconds. Find the time required by the particle in passing between points which are at distances 15 cm and 5 cm from the centre of force and are on the same side of it.

Section-C

(8 Marks Each)

Q6) Find the work done in moving a particle in the force field $\overrightarrow{\mathrm{F}}=3 x^{2} \hat{i}+(2 x y-y) \hat{j}+3 \hat{k}$ along
(a) the straight line from $(0,0,0)$ to $(2,1,3)$;
(b) the curve $x^{2}=4 y, 3 x^{2}=8 z$ from $x=0$ to $x=2$.

Q7) Evaluate $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the square formed by the lines $x= \pm 1, y= \pm 1$.

Q8) A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days
(a) on which there is no demand,
(b) on which demand is refused. $\left(e^{-1.5}=0.2231\right)$.

Q9) Two random samples from two normal populations are given as:

Sample I	16	26	27	23	24	22
Sample II	33	42	35	32	28	31

Do the estimates of population variances differ significantly?

DoF	$(5,5)$	$(5,6)$	$(6,5)$
$\mathrm{F}_{5 \%}$	5.05	4.39	4.95

$$
t+t+
$$

