Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

Paper ID [A0119]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - $1^{st}/2^{nd}$)

ENGINEERING MATHEMATICS - II (AM - 102)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Five questions from Section B & C.
- 3) Select at least **Two** questions from Section B & C.

Section - A

Q1)

(2 Marks Each)

- a) Are the solutions $y_1 = \cos x \& y_2 = \sin x$, linearly independent.
- b) Explain Hermitian matrix with suitable example.
- c) Is the differential eg. $(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} 3y^2)dy = 0$, exact?
- d) Find the Particular Integral of $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$.
- e) Explain the technique of Bernoulli's linear equation.
- f) If $\vec{r} = a \sin \omega t + b \cos \omega t$; then find $\vec{r} \times \frac{d\vec{r}}{dt}$.
- g) Evaluate $\operatorname{div}\left[3x^2\hat{i} + 5xy^2\hat{j} + xyz^3\hat{k}\right]$ at the point (1, 2, 3).
- h) From a pack of 52 cards, three cards are drawn at random. Find the chance that they are a king, a queen and a jack.
- i) A variate X has following probability distribution

X	-3	6	9
p(X)	1/6	1/2	1/3

Evaluate $E(X^2)$.

j) Explain confidence limits of sampling.

E-589 [1208]

P.T.O.

Section - B

(8 Marks Each)

- **Q2)** Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Find A^{-1} . Also express $A^5 4A^4 7A^3 + 11A^2 A 10$ I as a linear polynomial in A.
- **Q3)** Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.
- **Q4)** Solve $y''-2y'+y=e^x \log x$, using method of variation.
- Q5) A particle is executing simple harmonic motion with amplitude 20 cm and time 4 seconds. Find the time required by the particle in passing between points which are at distances 15 cm and 5 cm from the centre of force and are on the same side of it.

Section - C

(8 Marks Each)

- **Q6)** Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xy y)\hat{j} + 3\hat{k}$ along
 - (a) the straight line from (0, 0, 0) to (2, 1, 3);
 - (b) the curve $x^2 = 4y$, $3x^2 = 8z$ from x = 0 to x = 2.
- **Q7)** Evaluate $\int_C [(x^2 + xy)dx + (x^2 + y^2)dy]$, where C is the square formed by the lines $x = \pm 1, y = \pm 1$.
- **Q8)** A car hire firm has two cars which it hires out day to day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days
 - (a) on which there is no demand,
 - (b) on which demand is refused. $(e^{-1.5} = 0.2231)$.
- Q9) Two random samples from two normal populations are given as:

Sample I	16	26	27	23	24	22
Sample II	33	42	35	32	28	31

Do the estimates of population variances differ significantly?

Bo the estimates of paper							
DoF	(5, 5)	(5, 6)	(6, 5)				
F _{5%}	5.05	4.39	4.95				

E-589